{ "id": "1902.08492", "version": "v1", "published": "2019-02-22T13:49:45.000Z", "updated": "2019-02-22T13:49:45.000Z", "title": "Some examples of $m$-isometries", "authors": [ "T. Bermúdez", "A. Martinón", "H. Zaway" ], "comment": "15 pages", "categories": [ "math.FA" ], "abstract": "We obtain the admissible sets on the unit circle to be the spectrum of a strict $m$-isometry on an $n$-finite dimensional Hilbert space. This property gives a better picture of the correct spectrum of an $m$-isometry. We determine that the only $m$-isometries on $\\mathbb{R}^2$ are $3$-isometries and isometries giving by $\\pm I+Q$, where $Q$ is a nilpotent operator. Moreover, on real Hilbert space, we obtain that $m$-isometries preserve volumes. Also we present a way to construct a strict $(m+1)$-isometry with an $m$-isometry given, using ideas of Aleman and Suciu \\cite[Proposition 5.2]{AS} on infinite dimensional Hilbert space.", "revisions": [ { "version": "v1", "updated": "2019-02-22T13:49:45.000Z" } ], "analyses": { "keywords": [ "infinite dimensional hilbert space", "real hilbert space", "isometries preserve volumes", "better picture", "correct spectrum" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }