{ "id": "1902.08252", "version": "v1", "published": "2019-02-21T20:33:30.000Z", "updated": "2019-02-21T20:33:30.000Z", "title": "On stability of linear neutral differential equations in the Hale form", "authors": [ "Leonid Berezansky", "Elena Braverman" ], "comment": "14 pages", "journal": "Appl. Math. Comput. 340 (2019), 63-71", "doi": "10.1016/j.amc.2018.08.010", "categories": [ "math.DS" ], "abstract": "We present new explicit exponential stability conditions for the linear scalar neutral equation with two variable coefficients and delays $$ (x(t)-a(t)x(g(t)))'=-b(t)x(h(t)), $$ where $|a(t)|<1$, $b(t)\\geq 0$, $h(t)\\leq t$, $g(t)\\leq t$, in the case when the delays $t-h(t)$, $t-g(t)$ are bounded, as well as an asymptotic stability condition, if the delays can be unbounded.", "revisions": [ { "version": "v1", "updated": "2019-02-21T20:33:30.000Z" } ], "analyses": { "subjects": [ "34K40", "34K20", "34K06", "45J05" ], "keywords": [ "linear neutral differential equations", "hale form", "explicit exponential stability conditions", "linear scalar neutral equation", "asymptotic stability condition" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }