{ "id": "1902.06079", "version": "v1", "published": "2019-02-16T10:02:12.000Z", "updated": "2019-02-16T10:02:12.000Z", "title": "Classification of string links up to $2n$-moves and link-homotopy", "authors": [ "Haruko A. Miyazawa", "Kodai Wada", "Akira Yasuhara" ], "comment": "16 pages, 8 figures", "categories": [ "math.GT" ], "abstract": "Two string links are equivalent up to $2n$-moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo $n$. Moreover, the set of the equivalence classes forms a finite group generated by elements of order $n$. The classification induces that if two string links are equivalent up to $2n$-moves for every $n>0$, then they are link-homotopic.", "revisions": [ { "version": "v1", "updated": "2019-02-16T10:02:12.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "string links", "milnor link-homotopy invariants", "equivalence classes forms", "equivalent", "congruent modulo" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }