{ "id": "1902.05890", "version": "v1", "published": "2019-02-15T17:16:03.000Z", "updated": "2019-02-15T17:16:03.000Z", "title": "Mice with finitely many Woodin cardinals from optimal determinacy hypotheses", "authors": [ "Sandra Müller", "Ralf Schindler", "W. Hugh Woodin" ], "comment": "121 pages", "categories": [ "math.LO" ], "abstract": "We prove the following result which is due to the third author. Let $n \\geq 1$. If $\\boldsymbol\\Pi^1_n$ determinacy and $\\Pi^1_{n+1}$ determinacy both hold true and there is no $\\boldsymbol\\Sigma^1_{n+2}$-definable $\\omega_1$-sequence of pairwise distinct reals, then $M_n^\\#$ exists and is $\\omega_1$-iterable. The proof yields that $\\boldsymbol\\Pi^1_{n+1}$ determinacy implies that $M_n^\\#(x)$ exists and is $\\omega_1$-iterable for all reals $x$. A consequence is the Determinacy Transfer Theorem for arbitrary $n \\geq 1$, namely the statement that $\\boldsymbol\\Pi^1_{n+1}$ determinacy implies $\\Game^{(n)}(<\\omega^2 - \\boldsymbol\\Pi^1_1)$ determinacy.", "revisions": [ { "version": "v1", "updated": "2019-02-15T17:16:03.000Z" } ], "analyses": { "keywords": [ "optimal determinacy hypotheses", "woodin cardinals", "determinacy implies", "determinacy transfer theorem", "pairwise distinct reals" ], "note": { "typesetting": "TeX", "pages": 121, "language": "en", "license": "arXiv", "status": "editable" } } }