{ "id": "1902.05154", "version": "v1", "published": "2019-02-13T22:57:16.000Z", "updated": "2019-02-13T22:57:16.000Z", "title": "$L^1$-spaces of vector measures with vector density", "authors": [ "Celia Avalos-Ramos" ], "comment": "15 pages", "categories": [ "math.FA" ], "abstract": "Let $F$ be a function with values in a Banach space. When $F$ is locally (Pettis or Bochner) integrable with respect to a locally determined positive measure, a vector measure $\\nu_F$ with density $F$ defined on a $\\delta$-ring is obtained. We present the existing connection between the spaces $L^1_w(\\nu_F)$, $L^1(\\nu_F)$ and $L^1(|\\nu_F|)$ and the spaces of Dunford, Pettis or Bochner integrable functions.", "revisions": [ { "version": "v1", "updated": "2019-02-13T22:57:16.000Z" } ], "analyses": { "subjects": [ "46G10", "28B05" ], "keywords": [ "vector measure", "vector density", "banach space", "bochner integrable functions", "locally determined positive measure" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }