{ "id": "1902.04351", "version": "v1", "published": "2019-02-12T12:14:23.000Z", "updated": "2019-02-12T12:14:23.000Z", "title": "On Helmholtz equations and counterexamples to Strichartz estimates in hyperbolic space", "authors": [ "Jean-Baptiste Casteras", "Rainer Mandel" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study nonlinear Helmholtz equations (NLH) $-\\Delta_{\\mathbb{H}^N} u - \\frac{(N-1)^2}{4} u -\\lambda^2 u = \\Gamma|u|^{p-2}u$ in $\\mathbb{H}^N$, $N\\geq 2$ where $\\Delta_{\\mathbb{H}^N}$ denotes the Laplace-Beltrami operator in the hyperbolic space $\\mathbb{H}^N$ and $\\Gamma\\in L^\\infty(\\mathbb{H}^N)$ is chosen suitably. Using fixed point and variational techniques, we find nontrivial solutions to (NLH) for all $\\lambda>0$ and $p>2$. The oscillatory behaviour and decay rates of radial solutions is analyzed, with possible extensions to Cartan-Hadamard manifolds and Damek-Ricci spaces. Our results rely on a new Limiting Absorption Principle for the Helmholtz operator in $\\mathbb{H}^N$. As a byproduct, we obtain simple counterexamples to certain Strichartz estimates.", "revisions": [ { "version": "v1", "updated": "2019-02-12T12:14:23.000Z" } ], "analyses": { "keywords": [ "hyperbolic space", "strichartz estimates", "study nonlinear helmholtz equations", "simple counterexamples", "helmholtz operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }