{ "id": "1902.04136", "version": "v1", "published": "2019-02-11T20:35:33.000Z", "updated": "2019-02-11T20:35:33.000Z", "title": "On automorphisms of moduli spaces of parabolic vector bundles", "authors": [ "Carolina Araujo", "Thiago Fassarella", "Inder Kaur", "Alex Massarenti" ], "comment": "13 pages", "categories": [ "math.AG" ], "abstract": "Fix $n\\geq 5$ general points $p_1, \\dots, p_n\\in\\mathbb{P}^1$, and a weight vector $\\mathcal{A} = (a_{1}, \\dots, a_{n})$ of real numbers $0 \\leq a_{i} \\leq 1$. Consider the moduli space $\\mathcal{M}_{\\mathcal{A}}$ parametrizing rank two parabolic vector bundles with trivial determinant on $\\big(\\mathbb{P}^1, p_1,\\dots , p_n\\big)$ which are semistable with respect to $\\mathcal{A}$. Under some conditions on the weights, we determine and give a modular interpretation for the automorphism group of the moduli space $\\mathcal{M}_{\\mathcal{A}}$. It is isomorphic to $\\left(\\frac{\\mathbb{Z}}{2\\mathbb{Z}}\\right)^{k}$ for some $k\\in \\{0,\\dots, n-1\\}$, and is generated by admissible elementary transformations of parabolic vector bundles. The largest of these automorphism groups, with $k=n-1$, occurs for the central weight $\\mathcal{A}_{F}= \\left(\\frac{1}{2},\\dots,\\frac{1}{2}\\right)$. The corresponding moduli space ${\\mathcal M}_{\\mathcal{A}_F}$ is a Fano variety of dimension $n-3$, which is smooth if $n$ is odd, and has isolated singularities if $n$ is even.", "revisions": [ { "version": "v1", "updated": "2019-02-11T20:35:33.000Z" } ], "analyses": { "subjects": [ "14D20", "14H37", "14J10", "14J45", "14E30" ], "keywords": [ "parabolic vector bundles", "automorphism group", "trivial determinant", "weight vector", "modular interpretation" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }