{ "id": "1902.03851", "version": "v1", "published": "2019-02-11T13:04:45.000Z", "updated": "2019-02-11T13:04:45.000Z", "title": "Congruences on sums of $q$-binomial coefficients", "authors": [ "Ji-Cai Liu", "Fedor Petrov" ], "comment": "11 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We establish a $q$-analogue of Sun--Zhao's congruence on harmonic sums. Based on this $q$-congruence and a $q$-series identity, we prove a congruence conjecture on sums of central $q$-binomial coefficients, which was recently proposed by Guo. We also deduce a $q$-analogue of a congruence due to Apagodu and Zeilberger from Guo's $q$-congruence.", "revisions": [ { "version": "v1", "updated": "2019-02-11T13:04:45.000Z" } ], "analyses": { "subjects": [ "11B65", "11A07", "05A10" ], "keywords": [ "binomial coefficients", "sun-zhaos congruence", "harmonic sums", "series identity" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }