{ "id": "1902.03843", "version": "v1", "published": "2019-02-11T12:33:31.000Z", "updated": "2019-02-11T12:33:31.000Z", "title": "A Sundaram type bijection for $\\mathrm{SO}(2k+1)$: vacillating tableaux and pairs consisting of a standard Young tableau and an orthogonal Littlewood-Richardson tableau", "authors": [ "Judith Jagenteufel" ], "categories": [ "math.CO", "math.RT" ], "abstract": "We present a bijection between vacillating tableaux and pairs consisting of a standard Young tableau and an orthogonal Littlewood-Richardson tableau for the special orthogonal group $\\mathrm{SO}(2k+1)$. This bijection is motivated by the direct-sum-decomposition of the $r$th tensor power of the defining representation of $\\mathrm{SO}(2k+1)$. To formulate it, we use Kwon's orthogonal Littlewood-Richardson tableaux and introduce new alternative tableaux they are in bijection with. Moreover we use a suitably defined descent set for vacillating tableaux to determine the quasi-symmetric expansion of the Frobenius characters of the isotypic components.", "revisions": [ { "version": "v1", "updated": "2019-02-11T12:33:31.000Z" } ], "analyses": { "subjects": [ "05E10" ], "keywords": [ "standard young tableau", "sundaram type bijection", "vacillating tableaux", "pairs consisting", "kwons orthogonal littlewood-richardson tableaux" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }