{ "id": "1902.03692", "version": "v1", "published": "2019-02-11T01:04:25.000Z", "updated": "2019-02-11T01:04:25.000Z", "title": "Generators for the $C^m$-closures of Ideals", "authors": [ "Charles Fefferman", "Garving K. Luli" ], "comment": "47 pages, see also the related article \"Solutions to a System of Equations for $C^m$ Functions\"", "categories": [ "math.CA", "math.AC", "math.AG", "math.RA" ], "abstract": "Let $\\mathscr{R}$ denote the ring of real polynomials on $\\mathbb{R}^{n}$. Fix $m\\geq 0$, and let $A_{1},\\cdots ,A_{M}\\in \\mathscr{R}$. The $ C^{m}$-closure of $\\left( A_{1},\\cdots ,A_{M}\\right) $, denoted here by $ \\left[ A_{1},\\cdots ,A_{M};C^{m}\\right] $, is the ideal of all $f\\in \\mathscr{R}$ expressible in the form $f=F_{1}A_{1}+\\cdots +F_{M}A_{M}$ with each $F_{i}\\in C^{m}\\left( \\mathbb{R}^{n}\\right) $. In this paper we exhibit an algorithm to compute generators for $\\left[ A_{1},\\cdots ,A_{M};C^{m}\\right] $.", "revisions": [ { "version": "v1", "updated": "2019-02-11T01:04:25.000Z" } ], "analyses": { "keywords": [ "generators", "real polynomials" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }