{ "id": "1902.03491", "version": "v1", "published": "2019-02-09T21:18:27.000Z", "updated": "2019-02-09T21:18:27.000Z", "title": "On a problem of Pillai with Fibonacci numbers and powers of $3$", "authors": [ "Mahadi Ddamulira" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "Consider the sequence $ \\{F_{n}\\}_{n\\geq 0} $ of Fibonacci numbers defined by $ F_0=0 $, $ F_1 =1$ and $ F_{n+2}=F_{n+1}+ F_{n} $ for all $ n\\geq 0 $. In this paper, we find all integers $ c $ having at least two representations as a difference between a Fibonacci number and a power of $ 3 $.", "revisions": [ { "version": "v1", "updated": "2019-02-09T21:18:27.000Z" } ], "analyses": { "subjects": [ "11B39", "11J86" ], "keywords": [ "fibonacci number", "representations", "difference" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }