{ "id": "1902.03333", "version": "v1", "published": "2019-02-09T00:02:53.000Z", "updated": "2019-02-09T00:02:53.000Z", "title": "More concordance homomorphisms from knot Floer homology", "authors": [ "Irving Dai", "Jennifer Hom", "Matthew Stoffregen", "Linh Truong" ], "comment": "50 pages, 6 figures", "categories": [ "math.GT" ], "abstract": "We define an infinite family of linearly independent, integer-valued smooth concordance homomorphisms. Our homomorphisms are explicitly computable and rely on local equivalence classes of knot Floer complexes over the ring $\\mathbb{F}[U, V]/(UV=0)$. We compare our invariants to other concordance homomorphisms coming from knot Floer homology, and discuss applications to topologically slice knots, concordance genus, and concordance unknotting number.", "revisions": [ { "version": "v1", "updated": "2019-02-09T00:02:53.000Z" } ], "analyses": { "subjects": [ "57M25", "57N70", "57R58" ], "keywords": [ "knot floer homology", "integer-valued smooth concordance homomorphisms", "knot floer complexes", "local equivalence classes", "concordance unknotting number" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }