{ "id": "1902.03279", "version": "v1", "published": "2019-02-08T20:22:44.000Z", "updated": "2019-02-08T20:22:44.000Z", "title": "Unique Continuation Properties for solutions to the Camassa-Holm equation and other non-local equations", "authors": [ "Felipe Linares", "Gustavo Ponce" ], "categories": [ "math.AP" ], "abstract": "It is shown that if $\\,u(x,t)\\,$ is a solution of the initial value problem for the Camassa-Holm equation which vanishes in an open set $\\,\\Omega\\subset \\mathbb R\\times [0,T]$, then $\\,u(x,t)=0,\\,(x,t)\\in\\mathbb R\\times [0,T]$. This result also applies to solutions of the initial periodic boundary value problems associated to the Camassa-Holm equation. The argument of proof can be placed in a general setting to extend the above results to a class of non-linear non-local 1-dimensional models which includes the Degasperis-Procesi equation.", "revisions": [ { "version": "v1", "updated": "2019-02-08T20:22:44.000Z" } ], "analyses": { "subjects": [ "35Q51", "37K10" ], "keywords": [ "camassa-holm equation", "unique continuation properties", "non-local equations", "initial periodic boundary value problems", "initial value problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }