{ "id": "1902.02018", "version": "v1", "published": "2019-02-06T04:25:04.000Z", "updated": "2019-02-06T04:25:04.000Z", "title": "Restriction of $p$-modular representations of $U(2, 1)$ to a Borel subgroup", "authors": [ "Peng Xu" ], "comment": "Preliminary version, comments welcome", "categories": [ "math.RT" ], "abstract": "Let $G$ be the unramified unitary group $U(2, 1)(E/F)$ defined over a non-archimedean local field $F$ of odd residue characteristic $p$, and $B$ be the standard Borel subgroup of $G$. We prove in this note that the restriction of any supersingular representation of $G$ to $B$ is irreducible, analogous to a result of Pa$\\check{\\text{s}}$k$\\bar{\\text{u}}$nas on $GL_2 (F)$.", "revisions": [ { "version": "v1", "updated": "2019-02-06T04:25:04.000Z" } ], "analyses": { "subjects": [ "22E50" ], "keywords": [ "modular representations", "restriction", "odd residue characteristic", "non-archimedean local field", "standard borel subgroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }