{ "id": "1902.01174", "version": "v1", "published": "2019-02-04T13:31:06.000Z", "updated": "2019-02-04T13:31:06.000Z", "title": "Existence of solution for a system involving fractional Laplacians and a Radon measure", "authors": [ "Amita Soni", "D. Choudhuri" ], "categories": [ "math.AP" ], "abstract": "An existence of a nontrivial solution in some `weaker' sense of the following system of equations \\begin{align*} (-\\Delta)^{s}u+l(x)\\phi u+w(x)|u|^{k-1}u&=\\mu~\\text{in}~\\Omega\\nonumber\\\\ (-\\Delta)^{s}\\phi&= l(x)u^2~\\text{in}~\\Omega\\nonumber\\\\ u=\\phi&=0 ~\\text{in}~\\mathbb{R}^N\\setminus\\Omega \\end{align*} has been proved. Here $s \\in (0,1)$, $l,w$ are bounded nonnegative functions in $\\Omega$, $\\mu$ is a Radon measure and $k > 1$ belongs to a certain range.", "revisions": [ { "version": "v1", "updated": "2019-02-04T13:31:06.000Z" } ], "analyses": { "subjects": [ "35J35", "35J60" ], "keywords": [ "radon measure", "fractional laplacians", "nontrivial solution", "bounded nonnegative functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }