{ "id": "1902.01150", "version": "v1", "published": "2019-02-04T12:33:54.000Z", "updated": "2019-02-04T12:33:54.000Z", "title": "Estimates of norms of log-concave random matrices with dependent entries", "authors": [ "Marta Strzelecka" ], "comment": "16 pages", "categories": [ "math.PR", "math.FA" ], "abstract": "We prove estimates for $\\mathbb{E} \\| X: \\ell_{p'}^n \\to \\ell_q^m\\|$ for $p,q\\ge 2$ and any random matrix $X$ having the entries of the form $a_{ij}Y_{ij}$, where $Y=(Y_{ij})_{1\\le i\\le m, 1\\le j\\le n}$ has i.i.d. isotropic log-concave rows. This generalises the result of Gu\\'edon, Hinrichs, Litvak, and Prochno for Gaussian matrices with independent entries. Our estimate is optimal up to logarithmic factors. As a byproduct we provide the analogue bound for $m\\times n$ random matrices, which entries form an unconditional vector in $\\mathbb{R}^{mn}$. We also prove bounds for norms of matrices which entries are certain Gaussian mixtures.", "revisions": [ { "version": "v1", "updated": "2019-02-04T12:33:54.000Z" } ], "analyses": { "subjects": [ "60B20", "46B09", "15B52" ], "keywords": [ "random matrix", "log-concave random matrices", "isotropic log-concave rows", "gaussian matrices", "independent entries" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }