{ "id": "1902.00317", "version": "v1", "published": "2019-02-01T13:16:14.000Z", "updated": "2019-02-01T13:16:14.000Z", "title": "Idempotent reduction for the finitistic dimension conjecture", "authors": [ "Diego Bravo", "Charles Paquette" ], "comment": "9 pages", "categories": [ "math.RT" ], "abstract": "In this note, we prove that if $\\Lambda$ is an Artin algebra with a simple module $S$ of finite projective dimension, then the finiteness of the finitistic dimension of $\\Lambda$ implies that of $(1-e)\\Lambda(1-e)$ where $e$ is the primitive idempotent supporting $S$. We derive some consequences of this. In particular, we recover a result of Green-Solberg-Psaroudakis: if $\\Lambda$ is the quotient of a path algebra by an admissible ideal $I$ whose defining relations do not involve a certain arrow $\\alpha$, then the finitistic dimension of $\\Lambda$ is finite if and only if that of $\\Lambda/\\Lambda\\alpha \\Lambda$ is.", "revisions": [ { "version": "v1", "updated": "2019-02-01T13:16:14.000Z" } ], "analyses": { "subjects": [ "16E10", "16G20" ], "keywords": [ "finitistic dimension conjecture", "idempotent reduction", "path algebra", "finite projective dimension", "artin algebra" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }