{ "id": "1902.00007", "version": "v1", "published": "2019-01-31T02:44:28.000Z", "updated": "2019-01-31T02:44:28.000Z", "title": "Properties of minimal charts and their applications V: charts of type $(3,2,2)$", "authors": [ "Teruo Nagase", "Akiko Shima" ], "comment": "27 pages, 23 figures. arXiv admin note: text overlap with arXiv:1609.08257, arXiv:1603.04639", "categories": [ "math.GT" ], "abstract": "Let $\\Gamma$ be a chart, and we denote by $\\Gamma_m$ the union of all the edges of label $m$. A chart $\\Gamma$ is of type $(3,2,2)$ if there exists a label $m$ such that $w(\\Gamma)=7$, $w(\\Gamma_m\\cap\\Gamma_{m+1})=3$, $w(\\Gamma_{m+1}\\cap\\Gamma_{m+2})=2$, and $w(\\Gamma_{m+2}\\cap\\Gamma_{m+3})=2$ where $w(G)$ is the number of white vertices in $G$. In this paper, we prove that there is no minimal chart of type $(3,2,2)$.", "revisions": [ { "version": "v1", "updated": "2019-01-31T02:44:28.000Z" } ], "analyses": { "subjects": [ "57Q45", "57Q35" ], "keywords": [ "minimal chart", "applications", "properties" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }