{ "id": "1901.11488", "version": "v1", "published": "2019-01-30T08:51:53.000Z", "updated": "2019-01-30T08:51:53.000Z", "title": "Weak Gibbs and Equilibrium Measures for Shift Spaces", "authors": [ "C. -E. Pfister", "W. G. Sullivan" ], "categories": [ "math.DS", "cond-mat.stat-mech" ], "abstract": "For a large class of irreducible shift spaces $X\\subset\\tA^{\\Z^d}$, with $\\tA$ a finite alphabet, and for absolutely summable potentials $\\Phi$, we prove that equilibrium measures for $\\Phi$ are weak Gibbs measures. In particular, for $d=1$, the result holds for irreducible sofic shifts.", "revisions": [ { "version": "v1", "updated": "2019-01-30T08:51:53.000Z" } ], "analyses": { "keywords": [ "equilibrium measures", "weak gibbs measures", "large class", "result holds", "irreducible shift spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }