{ "id": "1901.11432", "version": "v1", "published": "2019-01-31T15:39:34.000Z", "updated": "2019-01-31T15:39:34.000Z", "title": "Uniqueness Properties of Solutions to the Benjamin-Ono equation and related models", "authors": [ "Carlos E. Kenig", "Gustavo Ponce", "Luis Vega" ], "categories": [ "math.AP" ], "abstract": "We prove that if $u_1,\\,u_2$ are solutions of the Benjamin-Ono equation defined in $ (x,t)\\in\\R \\times [0,T]$ which agree in an open set $\\Omega\\subset \\R \\times [0,T]$, then $u_1\\equiv u_2$. We extend this uniqueness result to a general class of equations of Benjamin-Ono type in both the initial value problem and the initial periodic boundary value problem. This class of 1-dimensional non-local models includes the intermediate long wave equation. Finally, we present a slightly stronger version of our uniqueness results for the Benjamin-Ono equation.", "revisions": [ { "version": "v1", "updated": "2019-01-31T15:39:34.000Z" } ], "analyses": { "keywords": [ "benjamin-ono equation", "uniqueness properties", "related models", "initial periodic boundary value problem", "intermediate long wave equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }