{ "id": "1901.10321", "version": "v1", "published": "2019-01-29T14:50:33.000Z", "updated": "2019-01-29T14:50:33.000Z", "title": "A note on growth of hyperbolic groups", "authors": [ "Motiejus Valiunas" ], "comment": "3 pages, 1 figure; comments are welcome!", "categories": [ "math.GR" ], "abstract": "The following short note provides an alternative proof of a result of Coornaert: namely, that given a non-elementary word-hyperbolic group $G$ with a finite generating set $X$, there exist constants $\\lambda,D > 1$ such that \\[ D^{-1}\\lambda^n \\leq |B_{G,X}(n)| \\leq D \\lambda^n \\] for all $n \\geq 0$, where $B_{G,X}(n)$ is the ball of radius $n$ in the Cayley graph $\\Gamma(G,X)$.", "revisions": [ { "version": "v1", "updated": "2019-01-29T14:50:33.000Z" } ], "analyses": { "subjects": [ "20F67", "20F69" ], "keywords": [ "hyperbolic groups", "non-elementary word-hyperbolic group", "short note", "finite generating set", "cayley graph" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }