{ "id": "1901.10267", "version": "v1", "published": "2019-01-29T13:19:47.000Z", "updated": "2019-01-29T13:19:47.000Z", "title": "Approximation of functions by neural networks", "authors": [ "Andreas Thom" ], "comment": "4 pages, no figures", "categories": [ "cs.LG", "stat.ML" ], "abstract": "We study the approximation of measurable functions on the hypercube by functions arising from affine neural networks. Our main achievement is an approximation of any measurable function $f \\colon W_n \\to [-1,1]$ up to a prescribed precision $\\varepsilon>0$ by a bounded number of neurons, depending only on $\\varepsilon$ and not on the function $f$ or $n \\in \\mathbb N$.", "revisions": [ { "version": "v1", "updated": "2019-01-29T13:19:47.000Z" } ], "analyses": { "keywords": [ "approximation", "affine neural networks", "measurable function", "main achievement" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }