{ "id": "1901.10033", "version": "v1", "published": "2019-01-28T23:21:22.000Z", "updated": "2019-01-28T23:21:22.000Z", "title": "Minimal genus four manifolds", "authors": [ "Román Aranda" ], "comment": "5 pages, 3 figures", "categories": [ "math.GT" ], "abstract": "In 2018, M. Chu and S. Tillmann gave a lower bound for the trisection genus of a closed 4-manifold in terms of the Euler characteristic of $M$ and the rank of its fundamental group. We show that given a group $G$, there exist a 4-manifold $M$ with fundamental group $G$ with trisection genus achieving Chu-Tillmann's lower bound.", "revisions": [ { "version": "v1", "updated": "2019-01-28T23:21:22.000Z" } ], "analyses": { "subjects": [ "57N13" ], "keywords": [ "minimal genus", "trisection genus achieving chu-tillmanns lower", "fundamental group", "genus achieving chu-tillmanns lower bound", "euler characteristic" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }