{ "id": "1901.09435", "version": "v1", "published": "2019-01-27T20:21:59.000Z", "updated": "2019-01-27T20:21:59.000Z", "title": "When Nilpotence Implies Normality of Bounded Linear Operators", "authors": [ "Nassima Frid", "Mohammed Hichem Mortad" ], "categories": [ "math.FA", "math.OA" ], "abstract": "In this paper, we give conditions forcing nilpotent matrices (and bounded linear operators in general) to be null or equivalently to be normal. Therefore, a non-zero operator having e.g. a positive real part is never nilpotent. The case of quasinilpotence is also considered.", "revisions": [ { "version": "v1", "updated": "2019-01-27T20:21:59.000Z" } ], "analyses": { "keywords": [ "bounded linear operators", "nilpotence implies normality", "conditions forcing nilpotent matrices", "positive real part", "non-zero operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }