{ "id": "1901.09034", "version": "v1", "published": "2019-01-23T09:40:47.000Z", "updated": "2019-01-23T09:40:47.000Z", "title": "Existence of regular $3$-hypertopes with $2^n$ chambers", "authors": [ "Dong-Dong Hou", "Yan-Quan Feng", "Dimitri Leemans" ], "comment": "11. arXiv admin note: text overlap with arXiv:1604.03162", "categories": [ "math.CO" ], "abstract": "For any positive integers $n, s, t, l$ such that $n \\geq 10$, $s, t \\geq 2$, $l \\geq 1$ and $n \\geq s+t+l$, a new infinite family of regular 3-hypertopes with type $(2^s, 2^t, 2^l)$ and automorphism group of order $2^n$ is constructed.", "revisions": [ { "version": "v1", "updated": "2019-01-23T09:40:47.000Z" } ], "analyses": { "subjects": [ "20B25", "20D15", "52B15" ], "keywords": [ "hypertopes", "automorphism group", "positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }