{ "id": "1901.08921", "version": "v1", "published": "2019-01-25T15:25:08.000Z", "updated": "2019-01-25T15:25:08.000Z", "title": "A consistency result on long cardinal sequences", "authors": [ "Juan Carlos Martinez", "Lajos Soukup" ], "comment": "20 pages", "categories": [ "math.LO", "math.GN" ], "abstract": "For any regular cardinal $\\kappa$ and ordinal $\\eta<\\kappa^{++}$ it is consistent that $2^{\\kappa}$ is as large as you wish, and every function $f:\\eta \\to [\\kappa,2^{\\kappa}]\\cap Card$ with $f(\\alpha)=\\kappa$ for $cf(\\alpha)<\\kappa$ is the cardinal sequence of some locally compact scattered space.", "revisions": [ { "version": "v1", "updated": "2019-01-25T15:25:08.000Z" } ], "analyses": { "subjects": [ "54A25", "06E05", "54G12", "03E35" ], "keywords": [ "long cardinal sequences", "consistency result", "locally compact scattered space", "regular cardinal", "consistent" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }