{ "id": "1901.08629", "version": "v1", "published": "2019-01-24T20:08:39.000Z", "updated": "2019-01-24T20:08:39.000Z", "title": "Realization of digraphs in Abelian groups and its consequences", "authors": [ "Sylwia Cichacz", "Zsolt Tuza" ], "categories": [ "math.CO" ], "abstract": "Let $\\overrightarrow{G}$ be a directed graph with no component of orderless than~$3$, and let $\\Gamma$ be a finite Abelian group such that $|\\Gamma|\\geq 4|V(\\overrightarrow{G})|$ or if $|V(\\overrightarrow{G})|$ is large enough with respect to an arbitrarily fixed $\\varepsilon>0$ then $|\\Gamma|\\geq (1+\\varepsilon)|V(\\overrightarrow{G})|$. We show that there exists an injective mapping $\\varphi$ from $V(\\overrightarrow{G})$ to the group $\\Gamma$ such that $\\sum_{x\\in V(C)}\\varphi(x) = 0$ for every connected component $C$ of $\\overrightarrow{G}$, where $0$ is the identity element of $\\Gamma$. Moreover we show some applications of this result to group distance magic labelings.", "revisions": [ { "version": "v1", "updated": "2019-01-24T20:08:39.000Z" } ], "analyses": { "keywords": [ "realization", "consequences", "group distance magic labelings", "finite abelian group", "identity element" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }