{ "id": "1901.08506", "version": "v1", "published": "2019-01-24T17:03:07.000Z", "updated": "2019-01-24T17:03:07.000Z", "title": "Most principal permutation classes have nonrational generating functions", "authors": [ "Miklós Bóna" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "We prove that for any fixed $n$, and for most permutation patterns $q$, the number $Av_{n,\\ell}(q)$ of $q$-avoiding permutations of length $n$ that consist of $\\ell$ skew blocks is a monotone decreasing function of $\\ell$. We then show that this implies that for most patterns $q$, the generating function $\\sum_{n\\geq 0} Av_n(q)z^n$ of the sequence $Av_n(q)$ of the numbers of $q$-avoiding permutations is not rational.", "revisions": [ { "version": "v1", "updated": "2019-01-24T17:03:07.000Z" } ], "analyses": { "subjects": [ "05A05", "05A15", "05A16", "05A19", "05A20" ], "keywords": [ "principal permutation classes", "nonrational generating functions", "avoiding permutations", "monotone decreasing function", "permutation patterns" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }