{ "id": "1901.06267", "version": "v1", "published": "2019-01-15T10:07:52.000Z", "updated": "2019-01-15T10:07:52.000Z", "title": "Log-affine geodesics in the manifold of vector states on a von Neumann algebra", "authors": [ "Jan Naudts" ], "categories": [ "math-ph", "math.MP", "math.PR" ], "abstract": "This paper introduces the notion of a log-affine geodesic connecting two vector states on a von Neumann algebra. The definition is linked to the standard notion of Boltzmann-Gibbs states in statistical physics and the related notion of quantum statistical manifolds. In the abelian case it is linked to the notion of exponential tangent spaces.", "revisions": [ { "version": "v1", "updated": "2019-01-15T10:07:52.000Z" } ], "analyses": { "keywords": [ "von neumann algebra", "vector states", "log-affine geodesic", "exponential tangent spaces", "abelian case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }