{ "id": "1901.06131", "version": "v1", "published": "2019-01-18T08:47:15.000Z", "updated": "2019-01-18T08:47:15.000Z", "title": "On the boundary Hölder regularity for the infinity Laplace equation", "authors": [ "Leyun Wu", "Yuanyuan Lian", "Kai Zhang" ], "categories": [ "math.AP" ], "abstract": "In this note, we prove the boundary H\\\"{o}lder regularity for the infinity Laplace equation under a proper geometric condition. This geometric condition is quite general, and the exterior cone condition, the Reifenberg flat domains, and the corkscrew domains (including the non-tangentially accessible domains) are special cases. The key idea, following [3], is that the strong maximum principle and the scaling invariance imply the boundary H\\\"{o}lder regularity.", "revisions": [ { "version": "v1", "updated": "2019-01-18T08:47:15.000Z" } ], "analyses": { "subjects": [ "35B65", "35J25", "35B50", "35J67" ], "keywords": [ "infinity laplace equation", "boundary hölder regularity", "reifenberg flat domains", "exterior cone condition", "proper geometric condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }