{ "id": "1901.04809", "version": "v1", "published": "2019-01-15T13:28:37.000Z", "updated": "2019-01-15T13:28:37.000Z", "title": "On the Chow ring of certain hypersurfaces in a Grassmannian", "authors": [ "Robert Laterveer" ], "comment": "11 pages, to appear in Le Matematiche, comments welcome", "categories": [ "math.AG" ], "abstract": "This small note is about Pl\\\"ucker hyperplane sections $X$ of the Grassmannian $\\operatorname{Gr}(3,V_{10})$. Inspired by the analogy with cubic fourfolds, we prove that the only non-trivial Chow group of $X$ is generated by Grassmannians of type $\\operatorname{Gr}(3,W_{6})$ contained in $X$. We also prove that a certain subring of the Chow ring of $X$ (containing all intersections of positive-codimensional subvarieties) injects into cohomology.", "revisions": [ { "version": "v1", "updated": "2019-01-15T13:28:37.000Z" } ], "analyses": { "subjects": [ "14C15", "14C25", "14C30" ], "keywords": [ "chow ring", "grassmannian", "hypersurfaces", "non-trivial chow group", "small note" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }