{ "id": "1901.04786", "version": "v1", "published": "2019-01-15T12:14:57.000Z", "updated": "2019-01-15T12:14:57.000Z", "title": "Cohesive Powers of Linear Orders", "authors": [ "Rumen Dimitrov", "Valentina Harizanov", "Andrey Morozov", "Paul Shafer", "Alexandra Soskova", "Stefan Vatev" ], "categories": [ "math.LO" ], "abstract": "Cohesive powers of computable structures can be viewed as effective ultraproducts over effectively indecomposable sets called cohesive sets. We investigate the isomorphism types of cohesive powers $\\Pi _{C}% \\mathcal{L}$ for familiar computable linear orders $\\mathcal{L}$. If $% \\mathcal{L}$ is isomorphic to the ordered set of natural numbers $\\mathbb{N}$ and has a computable successor function, then $\\Pi _{C}\\mathcal{L}$ is isomorphic to $\\mathbb{N}+\\mathbb{Q}\\times \\mathbb{Z}.$ Here, $+$ stands for the sum and $\\times $ for the lexicographical product of two orders. We construct computable linear orders $\\mathcal{L}_{1}$ and $\\mathcal{L}_{2}$ isomorphic to $\\mathbb{N},$ both with noncomputable successor functions, such that $\\Pi _{C}\\mathcal{L}_{1}\\mathbb{\\ }$is isomorphic to $\\mathbb{N}+% \\mathbb{Q}\\times \\mathbb{Z}$, while $\\Pi _{C}\\mathcal{L}_{2}$ is not$.$ While cohesive powers preserve all $\\Pi _{2}^{0}$ and $\\Sigma _{2}^{0}$ sentences, we provide new examples of $\\Pi _{3}^{0}$ sentences $\\Phi $ and computable structures $% \\mathcal{M}$ such that $\\mathcal{M}\\vDash \\Phi $ while $\\Pi _{C}\\mathcal{M}% \\vDash \\urcorner \\Phi .$", "revisions": [ { "version": "v1", "updated": "2019-01-15T12:14:57.000Z" } ], "analyses": { "subjects": [ "03C57", "03D45", "03C20" ], "keywords": [ "isomorphic", "computable structures", "familiar computable linear orders", "construct computable linear orders", "natural numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }