{ "id": "1901.04774", "version": "v1", "published": "2019-01-15T11:40:33.000Z", "updated": "2019-01-15T11:40:33.000Z", "title": "Profinite groups with restricted centralizers of commutators", "authors": [ "E. Detomi", "M. Morigi", "P. Shumyatsky" ], "categories": [ "math.GR" ], "abstract": "A group G has restricted centralizers if for each g in G the centralizer C_G(g) either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present article we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.", "revisions": [ { "version": "v1", "updated": "2019-01-15T11:40:33.000Z" } ], "analyses": { "subjects": [ "20F24", "20E18", "20F12" ], "keywords": [ "restricted centralizers", "handle profinite groups", "multilinear commutator word", "finite index", "shalev states" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }