{ "id": "1901.03907", "version": "v1", "published": "2019-01-12T22:04:24.000Z", "updated": "2019-01-12T22:04:24.000Z", "title": "On some properties of moduli of smoothness with Jacobi weights", "authors": [ "K. A. Kopotun", "D. Leviatan", "I. A. Shevchuk" ], "categories": [ "math.CA" ], "abstract": "We discuss some properties of the moduli of smoothness with Jacobi weights that we have recently introduced and that are defined as \\[ \\omega_{k,r}^\\varphi(f^{(r)},t)_{\\alpha,\\beta,p} :=\\sup_{0\\leq h\\leq t} \\left\\| {\\mathcal{W}}_{kh}^{r/2+\\alpha,r/2+\\beta}(\\cdot) \\Delta_{h\\varphi(\\cdot)}^k (f^{(r)},\\cdot)\\right\\|_p \\] where $\\varphi(x) = \\sqrt{1-x^2}$, $\\Delta_h^k(f,x)$ is the $k$th symmetric difference of $f$ on $[-1,1]$, \\[ {\\mathcal{W}}_\\delta^{\\xi,\\zeta} (x):= (1-x-\\delta\\varphi(x)/2)^\\xi (1+x-\\delta\\varphi(x)/2)^\\zeta , \\] and $\\alpha,\\beta > -1/p$ if $0