{ "id": "1901.03841", "version": "v1", "published": "2019-01-12T10:29:27.000Z", "updated": "2019-01-12T10:29:27.000Z", "title": "Diophantine equations coming from binomial near-collisions", "authors": [ "Nikos Katsipis" ], "comment": "27 pages", "categories": [ "math.NT" ], "abstract": "In this paper we solve the Diophantine equation $\\binom{m}{l}-\\binom{n}{k}=d$ (where m,n are positive integers unknowns) when (k,l)=(3,6) for various values of d and when (k,l)=(8,2) and d=1. As a byproduct of our results we will obtain that (k,l)-near collisions with difference 1 do not exist if (k,l)=(6,3), (3,6), (8,2) thus establishing a conjecture stated in the article \"Binomial collisions and near collisions\" published by A. Blokhuis, A. Brouwer and B. de Weger in Integers 17 (2017), A64.", "revisions": [ { "version": "v1", "updated": "2019-01-12T10:29:27.000Z" } ], "analyses": { "keywords": [ "diophantine equations coming", "binomial near-collisions", "binomial collisions", "positive integers unknowns", "conjecture" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }