{ "id": "1901.02570", "version": "v1", "published": "2019-01-09T01:13:18.000Z", "updated": "2019-01-09T01:13:18.000Z", "title": "A Splitting Formula in Instanton Floer Homology", "authors": [ "Nima Anvari" ], "comment": "9 pages", "categories": [ "math.GT" ], "abstract": "In a recent paper, Lin, Ruberman and Saveliev proved a splitting formula expressing the Seiberg-Witten invariant $\\lambda_{SW}(X)$ of a smooth $4$-manifold with rational homology of $S^1\\times S^3$ in terms of the Fr{\\o}yshov invariant $h(X)$ and a Lefschetz number in reduced monopole Floer homology. In this note we observe that a similar splitting formula holds in reduced instanton Floer homology.", "revisions": [ { "version": "v1", "updated": "2019-01-09T01:13:18.000Z" } ], "analyses": { "subjects": [ "57R57", "57R58", "57M27" ], "keywords": [ "similar splitting formula holds", "reduced monopole floer homology", "reduced instanton floer homology", "seiberg-witten invariant", "rational homology" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }