{ "id": "1901.02493", "version": "v1", "published": "2019-01-08T20:06:02.000Z", "updated": "2019-01-08T20:06:02.000Z", "title": "Blow-up analysis for a Hardy-Sobolev equation on compact Riemannian manifolds with application to the existence of solutions", "authors": [ "Youssef Maliki", "Fatima Zohra Terki" ], "categories": [ "math.AP" ], "abstract": "On a compact Riemannian manifold, we study a singular elliptic equation with critical Sobolev exponent and critical Hardy potential. In a first part, we prove an $H^2_1$ type decomposition result for Palais-Smale sequences of the associated energy functional. In a second part, we apply the decomposition result to obtain solutions of different energy levels.", "revisions": [ { "version": "v1", "updated": "2019-01-08T20:06:02.000Z" } ], "analyses": { "keywords": [ "compact riemannian manifold", "hardy-sobolev equation", "blow-up analysis", "application", "singular elliptic equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }