{ "id": "1901.02115", "version": "v1", "published": "2019-01-08T00:51:31.000Z", "updated": "2019-01-08T00:51:31.000Z", "title": "Paramodular forms coming from elliptic curves", "authors": [ "Manami Roy" ], "comment": "33 pages", "categories": [ "math.NT" ], "abstract": "There is a lifting from a non-CM elliptic curve $E/\\mathbb{Q}$ to a paramodular form $f$ of degree $2$ and weight $3$ given by the symmetric cube map. We find the level of $f$ in an explicit way in terms of the coefficients of the Weierstrass equation of $E$. In order to compute the paramodular level, we use the available description of the local representations of $\\mathrm{GL}(2,\\mathbb{Q}_p)$ attached to $E$ for $p \\ge 5$ and determine the local representation of $\\mathrm{GL}(2,\\mathbb{Q}_3)$ attached to $E$.", "revisions": [ { "version": "v1", "updated": "2019-01-08T00:51:31.000Z" } ], "analyses": { "subjects": [ "11F46", "11G07" ], "keywords": [ "paramodular forms coming", "local representation", "non-cm elliptic curve", "symmetric cube map", "paramodular level" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }