{ "id": "1901.00476", "version": "v1", "published": "2018-12-28T21:51:52.000Z", "updated": "2018-12-28T21:51:52.000Z", "title": "Further Combinatorial Identities deriving from the $n$-th power of a $2 \\times 2$ matrix", "authors": [ "James Mc Laughlin", "Nancy J. Wyshinski" ], "comment": "9 pages", "journal": "Discrete Applied Mathematics 154 (2006), no. 8, 1301--1308", "doi": "10.1016/j.dam.2006.01.003", "categories": [ "math.CO" ], "abstract": "In this paper we use a formula for the $n$-th power of a $2\\times2$ matrix $A$ (in terms of the entries in $A$) to derive various combinatorial identities. Three examples of our results follow. 1) We show that if $m$ and $n$ are positive integers and $s \\in \\{0,1,2,\\dots,$ $\\lfloor (mn-1)/2 \\rfloor \\}$, then \\begin{multline*} \\sum_{i,j,k,t}2^{1+2t-mn+n} \\frac{(-1)^{nk+i(n+1)}}{1+\\delta_{(m-1)/2,\\,i+k}} \\binom{m-1-i}{i} \\binom{m-1-2i}{k}\\times\\\\ \\binom{n(m-1-2(i+k))}{2j}\\binom{j}{t-n(i+k)} \\binom{n-1-s+t}{s-t}\\\\ =\\binom{mn-1-s}{s}. \\end{multline*} 2) The generalized Fibonacci polynomial $f_{m}(x,s)$ can be expressed as \\[ f_{m}(x,s)= \\sum_{k=0}^{\\lfloor (m-1)/2 \\rfloor}\\binom{m-k-1}{k}x^{m-2k-1}s^{k}. \\] We prove that the following functional equation holds: \\begin{equation*} f_{mn}(x,s)=f_{m}(x,s)\\times f_{n}\\left (\\,f_{m+1}(x,s)+sf_{m-1}(x,s), \\,-(-s)^{m}\\right) . \\end{equation*} 3) If an arithmetical function $f$ is multiplicative and for each prime $p$ there is a complex number $g(p)$ such that \\begin{equation*} f(p^{n+1}) = f(p)f(p^{n})- g(p)f(p^{n-1}), \\hspace{15pt} n \\geq 1, \\end{equation*} then $f$ is said to be \\emph{specially multiplicative}. We give another derivation of the following formula for a specially multiplicative function $f$ evaluated at a prime power: \\begin{equation*} f(p^{k})=\\sum_{j=0}^{\\lfloor k/2 \\rfloor}(-1)^{j} \\binom{k-j}{j}f(p)^{k-2j}g(p)^{j}. \\end{equation*} We also prove various other combinatorial identities.", "revisions": [ { "version": "v1", "updated": "2018-12-28T21:51:52.000Z" } ], "analyses": { "subjects": [ "11A55" ], "keywords": [ "combinatorial identities deriving", "th power", "functional equation holds", "complex number", "prime power" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }