{ "id": "1901.00254", "version": "v1", "published": "2019-01-02T03:38:16.000Z", "updated": "2019-01-02T03:38:16.000Z", "title": "Two-curve Green's function for $2$-SLE: the boundary case", "authors": [ "Dapeng Zhan" ], "comment": "76 pages", "categories": [ "math.PR" ], "abstract": "We prove that for a $2$-SLE$_\\kappa$ pair $(\\eta_1,\\eta_2)$ in a simply connected domain $D$, whose boundary is $C^1$ near $z_0\\in \\partial D$, there is some $\\alpha>0$ such that $\\lim_{r\\to 0^+}r^{-\\alpha} \\mathbb{P}[\\mbox{dist}(z_0,\\eta_j)