{ "id": "1812.11556", "version": "v1", "published": "2018-12-30T15:30:43.000Z", "updated": "2018-12-30T15:30:43.000Z", "title": "On the structure of distance sets over prime fields", "authors": [ "Thang Pham", "Andrew Suk" ], "comment": "8 pages. Submitted for publication", "categories": [ "math.CO", "math.NT" ], "abstract": "Let $\\mathbb{F}_q$ be a finite field of order $q$ and $\\mathcal{E}$ be a set in $\\mathbb{F}_q^d$. The distance set of $\\mathcal{E}$, denoted by $\\Delta(\\mathcal{E})$, is the set of distinct distances determined by the pairs of points in $\\mathcal{E}$. Very recently, Iosevich, Koh, and Parshall (2018) proved that if $|\\mathcal{E}|\\gg q^{d/2}$, then the quotient set of $\\Delta(\\mathcal{E})$ satisfies \\[\\left\\vert\\frac{\\Delta(\\mathcal{E})}{\\Delta(\\mathcal{E})}\\right\\vert=\\left\\vert \\left\\lbrace\\frac{a}{b}\\colon a, b\\in \\Delta(\\mathcal{E}), b\\ne 0\\right\\rbrace\\right\\vert\\gg q.\\] In this paper, we break the exponent $d/2$ when $\\mathcal{E}$ is a Cartesian product of sets over a prime field. More precisely, let $p$ be a prime and $A\\subset \\mathbb{F}_p$. If $\\mathcal{E}=A^d\\subset \\mathbb{F}_p^d$ and $|\\mathcal{E}|\\gg p^{\\frac{d}{2}-\\varepsilon}$ for some $\\varepsilon>0$, then we have \\[\\left\\vert\\frac{\\Delta(\\mathcal{E})}{\\Delta(\\mathcal{E})}\\right\\vert, ~\\left\\vert \\Delta(\\mathcal{E})\\cdot \\Delta(\\mathcal{E})\\right\\vert \\gg p.\\] Such improvements are not possible over arbitrary finite fields. These results give us a better understanding about the structure of distance sets and the Erd\\H{o}s-Falconer distance conjecture over finite fields.", "revisions": [ { "version": "v1", "updated": "2018-12-30T15:30:43.000Z" } ], "analyses": { "keywords": [ "distance set", "prime field", "arbitrary finite fields", "distinct distances", "distance conjecture" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }