{ "id": "1812.11299", "version": "v1", "published": "2018-12-29T06:47:07.000Z", "updated": "2018-12-29T06:47:07.000Z", "title": "New counterexamples on Ritt operators, sectorial operators and R-boundedness", "authors": [ "Loris Arnold", "Christian Le Merdy" ], "categories": [ "math.FA" ], "abstract": "Let $\\mathcal D$ be a Schauder decomposition on some Banach space $X$. We prove that if $\\mathcal D$ is not $R$-Schauder, then there exists a Ritt operator $T\\in B(X)$ which is a multiplier with respect to $\\mathcal D$, such that the set $\\{T^n\\, :\\, n\\geq 0\\}$ is not $R$-bounded. Likewise we prove that there exists a bounded sectorial operator $A$ of type $0$ on $X$ which is a multiplier with respect to $\\mathcal D$, such that the set $\\{e^{-tA}\\, : \\, t\\geq 0\\}$ is not $R$-bounded.", "revisions": [ { "version": "v1", "updated": "2018-12-29T06:47:07.000Z" } ], "analyses": { "subjects": [ "47A99", "46B15" ], "keywords": [ "ritt operator", "r-boundedness", "counterexamples", "banach space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }