{ "id": "1812.11279", "version": "v1", "published": "2018-12-29T03:48:33.000Z", "updated": "2018-12-29T03:48:33.000Z", "title": "Powers of a matrix and combinatorial identities", "authors": [ "James Mc Laughlin", "B. Sury" ], "comment": "9 pages", "journal": "INTEGERS: The Electronic Journal of Combinatorial Number Theory 5 (2005), A13, 9 pp", "categories": [ "math.CO" ], "abstract": "In this article we obtain a general polynomial identity in $k$ variables, where $k\\geq 2$ is an arbitrary positive integer. We use this identity to give a closed-form expression for the entries of the powers of a $k \\times k$ matrix. Finally, we use these results to derive various combinatorial identities.", "revisions": [ { "version": "v1", "updated": "2018-12-29T03:48:33.000Z" } ], "analyses": { "subjects": [ "05A19" ], "keywords": [ "combinatorial identities", "general polynomial identity", "arbitrary positive integer", "closed-form expression" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }