{ "id": "1812.10677", "version": "v1", "published": "2018-12-27T09:49:53.000Z", "updated": "2018-12-27T09:49:53.000Z", "title": "Neumann eigenvalue problems on the exterior domains", "authors": [ "T. V. Anoop", "Nirjan Biswas" ], "categories": [ "math.AP" ], "abstract": "For $ p\\in (1, \\infty)$, we consider the following weighted Neumann eigenvalue problem on $B_1^c$, the exterior of the closed unit ball in $R^N$: \\begin{equation}\\label{Neumann eqn} \\begin{aligned} -\\Delta_p \\phi & = \\lambda g |\\phi|^{p-2} \\phi \\ \\text{in}\\ B^c_1, \\displaystyle\\frac{\\partial \\phi}{\\partial \\nu} &= 0 \\ \\text{on} \\ \\partial B_1, \\end{aligned} \\end{equation} where $\\Delta_p$ is the $p$-Laplace operator and $g \\in L^1_{loc}(B^c_1)$ is an indefinite weight function. Depending on the values of $p$ and the dimension $N$, we take $g$ in certain Lorentz spaces or weighted Lebesgue spaces and show that the above eigenvalue problem admits an unbounded sequence of positive eigenvalues that includes a unique principal eigenvalue. For this purpose, we establish the compact embeddings of $ \\wpb$ into $L^p(B^c_1, |g|)$ for $g$ in certain weighted Lebesgue spaces. For $N>p$, we also provide an alternate proof for the embedding of $\\wpb$ into $L^{p^*,p}(B^c_1)$. Further, we show that the set of all eigenvalues is closed.", "revisions": [ { "version": "v1", "updated": "2018-12-27T09:49:53.000Z" } ], "analyses": { "subjects": [ "35P30", "35J50", "35J62", "35J66" ], "keywords": [ "exterior domains", "weighted lebesgue spaces", "unique principal eigenvalue", "weighted neumann eigenvalue problem", "eigenvalue problem admits" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }