{ "id": "1812.10554", "version": "v1", "published": "2018-12-03T19:06:41.000Z", "updated": "2018-12-03T19:06:41.000Z", "title": "A short note on conjugacy class racks", "authors": [ "Selçuk Kayacan" ], "comment": "2 pages", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite $p$-group and $C$ be a conjugacy class of $G$. We prove that the order complex of the subrack poset of $C$ is homotopy equivalent to a $(m-2)$-sphere, where $m$ is the number of maximal elements in the subrack poset.", "revisions": [ { "version": "v1", "updated": "2018-12-03T19:06:41.000Z" } ], "analyses": { "keywords": [ "conjugacy class racks", "short note", "subrack poset", "homotopy equivalent", "order complex" ], "note": { "typesetting": "TeX", "pages": 2, "language": "en", "license": "arXiv", "status": "editable" } } }