{ "id": "1812.10365", "version": "v1", "published": "2018-12-26T16:37:51.000Z", "updated": "2018-12-26T16:37:51.000Z", "title": "Generalized frame operator distance problems", "authors": [ "Pedro Massey", "Noelia Rios", "Demetrio Stojanoff" ], "comment": "24 pages. There exists text overlap with other arxiv manuscripts in the preliminary sections", "categories": [ "math.FA" ], "abstract": "Let $S\\in\\mathcal{M}_d(\\mathbb{C})^+$ be a positive semidefinite $d\\times d$ complex matrix and let $\\mathbf a=(a_i)_{i\\in\\mathbb{I}_k}\\in \\mathbb{R}_{>0}^k$, indexed by $\\mathbb{I}_k=\\{1,\\ldots,k\\}$, be a $k$-tuple of positive numbers. Let $\\mathbb T_{d}(\\mathbf a )$ denote the set of families $\\mathcal G=\\{g_i\\}_{i\\in\\mathbb{I}_k}\\in (\\mathbb{C}^d)^k$ such that $\\|g_i\\|^2=a_i$, for $i\\in\\mathbb{I}_k$; thus, $\\mathbb T_{d}(\\mathbf a )$ is the product of spheres in $\\mathbb{C}^d$ endowed with the product metric. For a strictly convex unitarily invariant norm $N$ in $\\mathcal{M}_d(\\mathbb{C})$, we consider the generalized frame operator distance function $\\Theta_{( N \\, , \\, S\\, , \\, \\mathbf a)}$ defined on $\\mathbb T_{d}(\\mathbf a )$, given by $$ \\Theta_{( N \\, , \\, S\\, , \\, \\mathbf a)}(\\mathcal G) =N(S-S_{\\mathcal G }) \\quad \\text{where} \\quad S_{\\mathcal G}=\\sum_{i\\in\\mathbb{I}_k} g_i\\,g_i^*\\in\\mathcal{M}_d(\\mathbb{C})^+\\,. $$ In this paper we determine the geometrical and spectral structure of local minimizers $\\mathcal G_0\\in\\mathbb T_{d}(\\mathbf a )$ of $\\Theta_{( N \\, , \\, S\\, , \\, \\mathbf a)}$. In particular, we show that local minimizers are global minimizers, and that these families do not depend on the particular choice of $N$.", "revisions": [ { "version": "v1", "updated": "2018-12-26T16:37:51.000Z" } ], "analyses": { "subjects": [ "42C15", "15A60" ], "keywords": [ "generalized frame operator distance problems", "convex unitarily invariant norm", "local minimizers", "generalized frame operator distance function" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }