{ "id": "1812.10163", "version": "v1", "published": "2018-12-25T20:11:12.000Z", "updated": "2018-12-25T20:11:12.000Z", "title": "Large deviations of the stationary distribution of a non Markov process", "authors": [ "Anatolii A. Puhalskii" ], "categories": [ "math.PR" ], "abstract": "We prove that the stationary distribution of the queue length process in an ergodic generalised Jackson network obeys the Large Deviation Principle with a deviation function given by the quasipotential. The latter is related to a unique stationary idempotent distribution of the large deviation limit of the queue length processes. The proof draws on developments in queueing network stability and idempotent probability.", "revisions": [ { "version": "v1", "updated": "2018-12-25T20:11:12.000Z" } ], "analyses": { "keywords": [ "large deviation", "non markov process", "stationary distribution", "queue length process", "unique stationary idempotent distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }