{ "id": "1812.09542", "version": "v1", "published": "2018-12-22T15:16:48.000Z", "updated": "2018-12-22T15:16:48.000Z", "title": "Coincidence and noncoincidence of dimensions in compact subsets of $[0,1]$", "authors": [ "Andrew Mitchell", "Lars Olsen" ], "comment": "18 pages", "categories": [ "math.MG" ], "abstract": "We show that given any six numbers $r,s,t,u,v,w \\in (0,1]$ satisfying $r \\leq s \\leq \\min(t,u) \\leq \\max(t,u) \\leq v \\leq w$, it is possible to construct a compact subset of $[0,1]$ with Hausdorff dimension equal to $r$, lower modified box dimension equal to $s$, packing dimension equal to $t$, lower box dimension equal to $u$, upper box dimension equal to $v$ and Assouad dimension equal to $w$. Moreover, the set constructed is an $r$-Hausdorff set and a $t$-packing set.", "revisions": [ { "version": "v1", "updated": "2018-12-22T15:16:48.000Z" } ], "analyses": { "subjects": [ "28A78", "28A80" ], "keywords": [ "compact subset", "upper box dimension equal", "lower box dimension equal", "noncoincidence", "lower modified box dimension equal" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }