{ "id": "1812.07779", "version": "v1", "published": "2018-12-19T06:51:40.000Z", "updated": "2018-12-19T06:51:40.000Z", "title": "Hölder Continuity and Differentiability Almost Everywhere of $(K_1, K_2)$-Quasiregular Mappings", "authors": [ "Hongya Gao", "Chao Liu", "Junwei Li" ], "comment": "This is an English version of our published Chinese article. The Chinese version can be found and downloaded at http://123.57.41.99/Jwk_sxxb_cn//CN/article/downloadArticleFile.do?attachType=PDF&id=21741", "journal": "Acta Mathematica Sinica Chinese Series, 2012,55(4), 721-726. http://www.actamath.com/Jwk_sxxb_cn/CN/abstract/abstract21741.shtml", "categories": [ "math.AP" ], "abstract": "This paper deals with $(K_1, K_2)$-quasiregular mappings. It is shown, by Morrey's Lemma and isoperimetric inequality, that every $(K_1, K_2)$-quasiregular mapping satisfies a H\\\"oolder condition with exponent {\\alpha} on compact subsets of its domain, where \\begin{align} \\alpha=\\begin{cases} 1/K_1, & \\text{for } K_1>1, \\\\ \\text{any positive number less than } 1, & \\text{for } K_1=1 \\text{ and } K_2>0, \\\\ 1, & \\text{for } K_1=1 \\text{ and } K_2=0, \\\\ 1, & \\text{for } K_1<1,\\\\ \\end{cases} \\end{align} Differentiability almost everywhere of $(K_1, K_2)$-quasiregular mappings is also derived.", "revisions": [ { "version": "v1", "updated": "2018-12-19T06:51:40.000Z" } ], "analyses": { "keywords": [ "hölder continuity", "differentiability", "paper deals", "morreys lemma", "quasiregular mapping satisfies" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }