{ "id": "1812.06246", "version": "v1", "published": "2018-12-15T07:00:36.000Z", "updated": "2018-12-15T07:00:36.000Z", "title": "Testing isomorphism of circulant objects in polynomial time", "authors": [ "Mikhail Muzychuk", "Ilia Ponomarenko" ], "comment": "8 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "Let ${\\frak K}$ be a class of combinatorial objects invariant with respect to a given regular cyclic group. It is proved that the isomorphism of any two objects $X,Y\\in{\\frak K}$ can be tested in polynomial time in sizes of $X$ and $Y$.", "revisions": [ { "version": "v1", "updated": "2018-12-15T07:00:36.000Z" } ], "analyses": { "subjects": [ "05E18", "05C60" ], "keywords": [ "polynomial time", "circulant objects", "testing isomorphism", "regular cyclic group", "combinatorial objects invariant" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }